SIMoNe: Statistical Inference for MOdular NEtworks
نویسندگان
چکیده
منابع مشابه
SIMoNe: Statistical Inference for MOdular NEtworks
SUMMARY The R package SIMoNe (Statistical Inference for MOdular NEtworks) enables inference of gene-regulatory networks based on partial correlation coefficients from microarray experiments. Modelling gene expression data with a Gaussian graphical model (hereafter GGM), the algorithm estimates non-zero entries of the concentration matrix, in a sparse and possibly high-dimensional setting. Its o...
متن کاملstatistical inference via empirical bayes approach for stationary and dynamic contingency tables
چکیده ندارد.
15 صفحه اولRouting for Statistical Inference in Sensor Networks
In the classical approach, the problem of distributed statistical inference and the problem of minimum cost routing of the measurements to the fusion center are treated separately. Such schemes cannot exploit the “inherent” saving in routing costs arising from data reduction in a sufficient statistic for inference. Our approach is to conduct in-network processing of the likelihood function whic...
متن کاملExact Statistical Inference for Some Parametric Nonhomogeneous Poisson Processes
Nonhomogeneous Poisson processes (NHPPs) are often used to model recurrent events, and there is thus a need to check model fit for such models. We study the problem of obtaining exact goodness-of-fit tests for certain parametric NHPPs, using a method based on Monte Carlo simulation conditional on sufficient statistics. A closely related way of obtaining exact confidence intervals in parametri...
متن کاملProcrustean statistical inference of deformations
A two step method has been devised for the statistical inference of deformation changes. In the first step of this method and based on Procrustes analysis of deformation tensors, the significance of the change in a time or space series of deformation tensors is statistically analyzed. In the second step significant change(s) in deformations are localized. In other words, they are assigned to ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2008
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btn637